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ABSTRACT 

Social network analysis frequently uses the idea of a clique in a network to 

identify key subgroups of highly-connected members of the network. We formulate the 

maximum clique problem on undirected graphs and develop two algorithms to solve it: a 

pruning algorithm and an enumeration algorithm. The pruning algorithm successively 

improves an upper bound on the clique number of a graph, and the enumeration 

algorithm successively finds larger and larger cliques in the graph. Both terminate with a 

maximum clique in the graph, and, when run together, provide an interval of uncertainty 

on the size of a maximum clique in a graph that converges to zero. We apply our 

algorithms to real examples in the modeling of terrorist social networks, and determine 

that our algorithms are efficient and practical for problems of moderate size. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research 

may not have been exercised for all cases of interest. While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

An undirected, simple graph, G=(V,E), is defined by a set of vertices, V, and a set 

of edges, E, consisting of unordered pairs of distinct vertices that represent symmetric, 

pairwise relationships, or adjacencies, between those vertices. A clique in a graph G is a 

subset of vertices, C V⊆ , such that every pair of vertices in C corresponds to an edge in 

E. Namely, every pair of vertices in C must be adjacent in G, and so C induces a 

complete, or maximally connected, subgraph of G. Finding cliques of maximum 

cardinality in a graph is a long-standing problem in graph theory, and is referred to as the 

maximum clique problem, or MCP. 

The MCP has important applications in many different domains. Some examples 

of military applications are in Cryptography and Cryptanalysis, Telecommunications, 

particularly in Wireless Networks and in Radio Frequency Assignment, and Social 

Networks Analysis. Since the clique is considered as the foundational idea for studying 

cohesive subgroups in social networks, this thesis considers the maximum clique problem 

with an emphasis on its application to military problems, especially in Social Networks 

Analysis. 

The primary question that this thesis addresses is the following: 

Can we identify and implement an exact algorithm to solve the Maximum Clique 

Problem (MCP) on undirected graphs, in a reasonable time frame? 

To achieve the above objective we selected two algorithms from the current 

literature and modified them to improve their performance, developing the pruning and 

enumeration algorithms. We then implemented both of these in a modern, powerful and 

widely used programming language, Java. Our testing involved applying both algorithms 

to real-world situations which could be modeled by undirected graphs: terrorist social 

networks. 

We verified that both algorithms solve the MCP on undirected graphs, and are 

quick on relatively small graphs. Furthermore, the pruning algorithm immediately 



 xviii

establishes an upper bound on the clique number of a graph and then successively 

improves this bound; thus the pruning algorithm can be terminated early with a valid 

upper bound on the clique number. Similarly, the enumeration algorithm quickly finds 

small cliques, and successively discovers larger and larger cliques in the graph as it 

progresses, each of which provides a lower bound on the clique number of the graph. It 

can be terminated early with a valid lower bound on the clique number. 

If both are run simultaneously each provides a bound the other cannot, and an 

interval of uncertainty can be established that will eventually be reduced to zero, at which 

point a maximum clique will have been found. 

Moreover analyzing a social network using the Social Networks Analysis 

methods and measures maximum cliques and vertices degree may provide enough 

information about the social structure of the network under investigation. More 

particularly, the maximum clique(s) and the clique(s) as well, may give us the most 

cohesive subgroups while the vertices with the largest vertex-degrees may show the most 

central actors in a social network. However, since cliques have been criticized for their 

restrictive nature we may consider and study one of the branches of the relaxation clique 

problem and analyze a social network under this concept. This may be the subject for an 

extension of this current thesis and an area for further investigation. It is worthwhile to 

point out that each algorithm can be modified in fairly straightforward ways to allow 

various relaxations of the definition of a clique. 
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I. INTRODUCTION 

It has been said that figures rule the world. Maybe. But I am sure that 
figures show us whether it is being ruled well or badly. 

Goethe 

A. CLIQUES IN SOCIAL NETWORK ANALYSIS  

An undirected, simple graph, G=(V,E), is defined by a set of vertices, V, and a set 

of edges, E, consisting of unordered pairs of distinct vertices that represent symmetric, 

pairwise relationships, or adjacencies, between those vertices. A clique in a graph G is a 

subset of vertices, C V⊆ , such that every pair of vertices in C corresponds to an edge in 

E. Namely, every pair of vertices in C must be adjacent in G, and so C induces a 

complete, or maximally connected, subgraph of G. Finding cliques of maximum 

cardinality in a graph is a long-standing problem in graph theory, and is referred to as the 

maximum clique problem, or MCP. 

The MCP has important applications in many different domains. Some examples 

of military applications are in Cryptography and Cryptanalysis, Telecommunications, 

particularly in Wireless Networks and in Radio Frequency Assignment, and Social 

Networks Analysis. In fact, according to Wasserman and Faust [10], “The clique is the 

foundational idea for studying cohesive subgroups in social networks….” This thesis 

considers the maximum clique problem with an emphasis on its application to military 

problems, especially in Social Networks Analysis.  

B. THESIS OBJECTIVE AND RESEARCH QUESTION 

The primary question that this thesis addresses is the following: 

Can we identify and implement an exact algorithm to solve the Maximum Clique 

Problem (MCP) on undirected graphs, in a reasonable time frame? 

To achieve the above objective we first review the current literature on MCP, and 

then select two existing algorithms related to this problem. We implement efficient 



 2

versions of both and apply them to real-world situations. We focus on social networks, 

where we find a wide variety of important applications. We will also consider interesting 

variations to the initial problem, such as various relaxations of the clique requirement that 

overcome objections to the MCP’s restrictive nature and modeling disadvantages. 

Finally, we analyze the behavior of our two algorithms and draw conclusions on their 

performance, utility and effectiveness. Our main intention is to improve their 

performance and obtain a new and more efficient algorithms that can be applied to 

military applications of the maximum clique problem (and its relaxations) for problems 

of reasonable size. 

C. LITERATURE REVIEW AND ITS CONNECTION TO CURRENT WORK  

The decision version of the MCP, in which the goal is to decide whether a given 

graph contains a clique of a given cardinality, is one of the first problems that have been 

proved to be NP-complete (see [1] for history and discussion), and therefore the MCP is 

an NP-Hard problem.  

Tarjan [7] was one of the first who addressed the MCP and presented one of the 

first algorithms that gave a reasonable and effective solution to the problem at hand. 

Tarjan provided an algorithm with a running time bounded by ( )2nO n , where n is the 

order of a given graph G . The basic algorithm examines every subset of the vertex set 

( )V G  of a given a graph G  with n vertices. The algorithm determines all subsets that 

are cliques, and chooses the largest clique found as the maximum clique. Since the 

number of subsets of any set with n elements is 2n , and it takes ( )O n  time to check if a 

subset forms a clique, it follows that the time upper bound for this simple algorithm to 

solve the MCP is ( )2nO n . 

Tarjan later succeeded in improving this basic algorithm and discovered other, 

improved algorithms. The first one had a worst-case time bound of ( )1.286 nk  for some 

constant k . Hence, within a fixed amount of time this improved algorithm could analyze  
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a larger graph than the basic algorithm. A few years later, Tarjan and Trojanowski [13] 

presented a recursive algorithm which determines a maximum independent set of n -

vertex graph in ( )32nO  time (see also [12]). 

Since the early 1970s, many papers have been published with algorithms for the 

MCP [2]. According to L. Babel in [3], earlier work diverged into two directions. The 

first concerned algorithms solving the problem for arbitrary graphs in exponential time, 

the other restricted to special classes of graphs where polynomial methods could be 

found. 

Between September 1992 and September 1993, the Second DIMACS 

Implementation Challenge took place. The purpose of the challenge was to encourage 

high-quality research on empirical issues in combinatorial optimization. The problem of 

finding cliques in graphs was one of the three problem classes that was discussed. 

According to the analytical results of this challenge, which were presented in [4], it seems 

unlikely to have a fast, i.e., polynomial time, algorithm to solve this kind of problem 

exactly. Even finding an approximate solution quickly is improbable due to the fact that it 

is an NP-complete problem. Moreover, all the papers presented during this challenge on 

finding cliques in a graph were a mixture of exact and heuristic methods, that is a mixture 

of exact and approximate methods [4]. We present a brief description of these two 

algorithm categories.  

The exact algorithms are those that have been proven mathematically to provide 

an optimal solution. Branch-and-bound, for example, is a finite computing time method 

that has been widely implemented in the efforts of solving the MCP or a part of it [2, 4]. 

Besides the quality of the solution that this method guarantees, it also provides the 

solution in an acceptable finite computing time. 

On the other hand, heuristics algorithms are those that cannot guarantee any 

solution quality. Greedy algorithms, Neighborhood search, and Tabu search are typical 

examples of heuristic methods which also have been considered in approaching the MCP 

[4, 9].  
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Early algorithms for solving the MCP as well as recent approaches included the 

branch-and-bound method. In [12], Wood referred to many fundamental approaches to 

the maximum clique problem which include branch-and-bound algorithms. First of all, 

Wood considered, in this paper, the significance of determining an upper and a lower 

bound for problems that are NP-complete like the MCP. He also presented a branch-and-

bound algorithm for finding a maximum clique in a graph, distinguishing two algorithms 

which were the most efficient ones known for the maximum clique problem until 1997. 

One of these algorithms was developed by Babel and presented in [3] while the other 

belongs to Balas and Xue and was presented in [14]. These algorithms calculated lower 

and upper bounds, which seems to be a great method for NP-complete problems. 

Moreover, according to Wood [12], Pardalos and Xue identified in their survey paper 

[15] the following three key questions that have arisen in a branch-and-bound algorithm 

for the MCP. We quote from [12]: 

1. How to find a good lower bound, i.e., a clique of large size? 

2. How to find a good upper bound on the size of maximum clique? 

3. How to branch, i.e., break a problem into smaller subproblems? 

And so, due to the hard nature of finding even an approximate solution to the 

MCP quickly, we selected an approach to the problem that combines two separate 

algorithms, a pruning algorithm, and an enumeration algorithms. The first finds a 

sequence of improved upper bounds on the maximum clique size, until it finds a clique of 

size equal to the current bound, and the latter uses backtracking search to build a 

sequence of larger and larger cliques, and therefore an increasing sequence of lower 

bounds on the maximum clique size; both find all maximum-size cliques in any given 

graph. 
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II. FORMULATING THE MAXIMUM CLIQUE PROBLEM 

Thanks to Euler, Graph Theory is thriving. 
Year by year it flourishes and blossoms, 

Fertilizing much of mathematics 
And so rich in all its applications. 

Bohdan Zelinka, 

The graph theory hymns 

A. BOUNDS AND ASSUMPTIONS 

In order to develop upper and lower bounds on clique sizes in a given network, 

and to justify our algorithms in Chapter III, we establish here a few key observations 

concerning cliques in simple, undirected graphs. 

1. Maximum Clique Size Bounds 

In [8], it was shown that every graph G with n  vertices and minimum vertex 

degree δ  must have a maximum clique of size at least n
n δ
⎡ ⎤
⎢ ⎥−⎢ ⎥

 and that this bound is the 

best possible in terms of n andδ . 

Moreover, we may set a condition for the existence of a maximum clique of size 

r  in an undirected graph : 

Observation 1: Consider an arbitrary graph G  with n  vertices. If G contains a 

clique of size r, then there must be at least r vertices, each of which has degree at least 

1r − . 

Conversely, if there do not exist at least r vertices of degree greater than or equal 

to r-1, then there can be no clique of order r in the graph G. This condition is used in both 

of our algorithms to set a quick upper bound for the maximum clique size in a given 

graph. 
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2. An Upper Bound on the Number of Cliques of Size r  

Let G  be an undirected graph with n vertices. Then an upper bound on the largest 

number of cliques of size r  (for some r such that 2 r n≤ ≤ ) is the number of subsets of 

cardinality r of the vertex set ( )V G , namely, ( )n
r . It is obvious that this number can be 

quite big for very large graphs, especially if we search for cliques of size r  with
2
nr ≈ . Of 

course, besides using the subsets of cardinality r we also have to count the number of 

vertices with degree greater than or equal to 1r − , as was discussed above. And so, in 

order for ( )n
r  cliques of order r to exist, G  must have at least r vertices of degree 

greater than or equal to 1r − . If we denote the number of nodes in G of degree at least r 

as nr, then a better upper bound on the number of cliques of size r is ( )1rn
r

− . 

B. GRAPH THEORY AND SOCIAL NETWORK ANALYSIS 

As we mentioned above, a variety of the tools and methods widely used in this 

thesis will come from Graph Theory and Operations Research areas. Moreover, since the 

applications we will use come from the Social Network Analysis (SNA) area we will also 

consider a framework to introduce some basic concepts of the latter, and see how all 

these areas are related to each other. Thus, we will be able to analyze more precisely our 

results, which arise from the algorithms’ implementation on graphs which model social 

networks, in Chapter V . 

1. Graph Theory 

A graph is an ordered pair consisting of two sets; the set of vertices, which 

represent items of interest, and the set of edges, which connect any two distinct vertices 

that satisfy a particular relation of interest. Hence, a graph G  = ( ( )V G , ( )E G ) is 

uniquely defined by its vertex set ( )V G  and its edge set ( )E G , or by a diagram that 

represents the vertices and edges pictorially. It can also be described by adjacency 
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matrices, incidence matrices or adjacency lists, each of which is useful for particular 

applications [11, p 48]. In our case, we chose to describe our graphs by their adjacency 

matrices, which are used as inputs to our algorithms. Other basic characterizations of a 

graph, or its components, that we use to solve the MCP are vertex degree, graph density, 

and subgraphs, which are derived by the clique concept and its alternatives. Below we 

briefly introduce these graph theoretic characteristics we used to solve the MCP. 

a. Adjacency Matrix 

As we introduced above, a graph G  = ( ( )V G , ( )E G ) of order n and size 

m, where ( ) { }1 2, ,..., nV G v v v= and ( ) { }1 2, ,..., nE G e e e=  can be described by its 

adjacency matrix. The adjacency matrix of G  is the n n× matrix ijA a⎡ ⎤= ⎣ ⎦ , where aij=1 if 

(vi,vj) is in E, and is zero otherwise. [11]. We do not admit loops, and so it follows that all 

the diagonal elements of adjacency matrix must be zeroes: 0, :1iia i i n= ∀ ≤ ≤ . 

Moreover, since we consider only undirected graphs, it follows that an 

edge between a vertex iv  and another one jv  is also an edge between jv  and iv . In other 

words, ,ij jia a i j= ∀ ≠ , that is, the adjacency matrix for an undirected graph is a 

symmetric matrix. The adjacency matrix of a complete graph contains 1s in all off-

diagonal cells: 1,ij jia a i j= = ∀ ≠ . 

b. Vertex Degree 

The degree of a vertex v in a graph G  is the number of edges incident to v 

and is denoted by degG v , or simply deg v  if the graph G  is clear from the context [11]. 

Formally, the degree of each vertex iv  of a graph G is 
1

deg , :1
n

G i ij
j

v a i i n
=

= ∀ ≤ ≤∑  or 

( )deg , :1G i iv N v i i n= ∀ ≤ ≤ , where ( )iN v  denotes the set of neighbors of, or nodes 

adjacent to, a vertex ( )iv V G∈ . 
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The degree of the vertices of a graph G take values that are not arbitrary 

but are governed under some basic rules and are related to the order and the size of G. 

Hence, we may introduce the First Theorem of Graph Theory and an observation about 

the limits of degree of the vertices as follows: 

The First Theorem of Graph Theory [11]: If G  is a graph of size m , 

then
( )

deg 2G
v V G

v m
∈

=∑ . 

Observation 2: If G  is a graph of order n  and v  is any vertex of G , 

then: ( ) ( )0 deg 1G v G nδ≤ ≤ ≤ Δ ≤ − , where ( )Gδ  and ( )GΔ  denote the minimum and 

the maximum degree of G, respectively [11]. 

c. Cliques 

We now present the definitions related with the clique and its associated 

concepts accompanied by several examples. These concepts are strongly related with the 

MCP and are considered in different kinds of relaxation of the clique problem as we 

explain in the next section. 

Given an undirected graph ( ),G V E  with n vertices and vertex set denoted 

by ( )V G , a clique is any complete subgraph of G. A clique of order r is denoted by rK . 

A maximal clique in a graph ( ),G V E  is a clique that can not be entirely contained 

within another clique [10], while a maximum clique is the largest complete subgraph of 

G. The order of the maximum clique of G is called the clique number of G, and is 

denoted by ( )Gω . Examples of nontrivial cliques (a single node or two adjacent nodes 

form trivial cliques), nontrivial maximal cliques, and the maximum clique of G are 

shown in Figure 1. 
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Figure 1.   A graph G and its nontrivial cliques, maximal cliques and maximum clique. 
(From [10]) 

2. Social Network Analysis (SNA) 

The pattern of relationships among the members of a group or a larger social 

system gives the relational structure among them. SNA is used to study this relational 

structure or any other structural variables measured on actors in the set [10]. According to 

Memon and Larsen in [19], “SNA in general studies the behavior of the individual at the 

micro level, the pattern of relationships (network structure) at the macro level, and the 

interactions between the two.” Moreover, SNA applies techniques to these relationships 

and investigates how they could be used to infer more information about the actors and 

groups [20]. More particularly, D. M. Akbar presents the following characteristics that 

SNA is intended to help identify [21]: 

• Important individual, event, place or group. 

• Dependency of individual nodes. 

• Leader-Follower identification. 

• Bonding between nodes. 

• Vulnerabilities identification. 

• Key players in the network. 

• Potential threat from the network. 

• Efficiency of overall network. 

1 

7

3 6

4 

2 5 Cliques of 3K : {1, 2, 3}, {1, 3, 4},  
 {3. 4, 6}, {3, 4, 7},  
 {3, 6, 7}, {4, 6, 7} 

Clique of 4K  {3, 4, 6, 7} 
 
Maximal cliques: {1, 2, 3}, 

     {1, 3, 4},  
       {3, 4, 6, 7} 
 
Maximum clique with ( ) 4Gω = : 

{3, 4, 6, 7} 
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In SNA, a subgraph in a graph is a clique if it is a maximal complete subgraph of 

three or more vertices. Mutual dyads are not considered to be cliques. For that reason the 

restriction that the clique contains at least three nodes is included in the definition [10]. 

We have to notice that referring to clique here Wasserman and Faust mean maximal 

clique. Moreover according to Balasundaram et al. in [5], “Clique models idealize three 

important structural properties that are expected of a cohesive subgroup, namely, 

familiarity (each vertex has many neighbors and only a few strangers in the group), 

reachability (a low diameter, facilitating fast communication between the group 

members) and robustness (high connectivity, making it difficult to destroy the group by 

removing members).” However, the clique approach has been criticized for its overly 

restrictive nature [5, 10, 22] and modeling disadvantages [23, 24]. Thus, alternative 

approaches have been suggested in order to relax the clique definition and different 

models have been developed in order to relax different aspects of a cohesive subgroup 

[5]. Hence, we may define the following clique relaxation models according to the 

property of the cohesive subgroup we want to relax [5,10]: 

1. Complete Mutuality (adjacency):    cliques 

2. Reachability and Diameter (geodesic distance):  k-clique 

k-clans 

k-clubs 

3. Nodal Degree (number of ties among subgroup members): k-plexes 

k-cores 

4. Relatively Nodal Degree (comparison of frequency of ties within to these 

ones outside subgroup):     LS Sets 

Lambda Sets 

Thus, it is obvious that the MCP we currently consider gives partial 

information about the structure of social networks. Nevertheless, it may be further 

considered under the relaxations presented above, in order to provide a more complete 

idea about the network’s social structure.  
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III. SOLVING THE MAXIMUM CLIQUE PROBLEM 

Once you eliminate the impossible, whatever remains, no matter how 
improbable, must be the truth…. 

Sherlock Holmes, by Sir Arthur Conan Doyle (1895-1930) 

A. INTRODUCTION TO THE PRUNING ALGORITHM  

Our pruning algorithm is based on the “clique program” developed by Bell [6], 

which is an algorithm to detect all maximal cliques in a graph. Given a graph G, the 

pruning algorithm uses Observation 1 to establish an upper bound on the maximum 

clique size, and then searches exhaustively for a clique of that size. If no such clique is 

found, the upper bound is reduced by one, and the algorithm searches for cliques of that 

new size. If the upper bound ever becomes two, the algorithm halts (as each edge in the 

graph is a clique of size two), otherwise, it stops after it has enumerated all cliques of the 

maximum cardinality in G. 

Our pruning algorithm is a branch-and-bound algorithm. As we will explain, 

some of the issues that play a significant role in the Pruning algorithm are (1) the degree 

of the vertices, (2) the number of vertices of the same degree, (3) the adjacency matrix, as 

well as (4) its structure, its form and its figure. 

According to Observation 1 presented above and considering the degree of the 

vertices and the number of vertices of the same degree, the algorithm quickly sets an 

upper bound on the clique number as a first step. Given an undirected graph ( ),G V E  

with n  vertices, described by its n n×  adjacency matrix as the input data, the algorithm 

solves the MCP through the following steps giving the corresponding answers/outputs: 

1. Input the n n×  adjacency matrix of G , 

2. Calculate the degree of each vertex, 

3. Set an upper bound on the clique number, ( )Gω  



 12

4. Try to find at least one clique of size ( )Gω .  

 If such a clique does not exist, reduce ( )Gω  and repeat this step (4). 

 Otherwise, ( )Gω is the cardinality of a maximum clique in G . 

5. Find all subsets of vertices that form maximum cliques for G . 

Our contributions beyond Bell’s [6] work is a more efficient implementation that 

is not limited to graphs of very small cardinality (Bell’s code was restricted to graphs 

with up to six vertices), and the development of the last step of the procedure. There, 

since we have found that there is at least a maximum clique of a particular order, say 

( )Gω , we find the maximum clique(s) considering only those vertices with degree 

greater than or equal to ( ) 1Gω − , and using special data structures to help avoid 

redundant or useless calculations in the enumeration, as presented in the next section.  

B. THE PRUNING ALGORITHM 

Let ( ) ( )( ),G V G E G=  be a graph with ( )n V G=  vertices and ( )m E G=  

edges and ( )iv V G∈  any vertex of G . Then [ ]iN v  is the set of neighbors of iv , that is, 

the set of all adjacent vertices to iv , together with iv  itself, called the closed 

neighborhood of iv . The subgraph induced by [ ]iN v  is denoted by [ ]iN v . The 

cardinality of [ ]iN v  is denoted by [ ]iN v ; that is, the number of vertices that are 

adjacent to iv , together with iv  itself. Similarly, for any ( )iv V G∈ , then ( )iN v  is the set 

of neighbors of iv , that is, the set of all adjacent vertices to iv , without iv  itself, called 

the neighborhood of iv . The subgraph induced by ( )iN v  is denoted by ( )iN v . The 

cardinality of ( )iN v  is denoted by ( )iN v ; that is, the number of vertices that are 

adjacent to iv , without iv  itself. 
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1. Algorithm PRUNING 

1. Set the n n×  adjacency matrix ijA a⎡ ⎤= ⎣ ⎦  of G , where aij=1 if ( ),i j E∈ , 

and is zero otherwise. 

2. ( )iv V G∀ ∈  find the degree of iv , [ ]
1

deg , 1,
n

i ij
j

v a i n
=

= ∀ ∈∑ , and calculate 

the maximum degree in G, ( ) [ ]max deg ii
G vΔ = . 

3. Set an upper bound on the clique number: 

a. Set ( )1( ) 1G Gω = Δ + . 

b. Let 
1

n

i
i

inducedSum b
=

= ∑  where {1
0ib = ( )1deg 1iif v G

otherwise
ω≥ −

, 

[ ]1,i n∀ ∈ . 

c. If ( )1inducedSum Gω≥ , then go to the next step 4; there might 

be a maximum clique with clique number ( ) ( )2 1G Gω ω= , 

where 2 ( )Gω  is again a potential clique number and forms an 

upper bound for the clique number. 

d. Else if ( )1inducedSum Gω< , then go back to step 3b and set 

( ) ( )1 1 1G Gω ω= − . 

4. Check if there is at least a maximum clique and the clique number ( )Gω , 

( ) ( ) ( )2: degi iv V G v Gω∀ ∈ ≥ , with [ ]1,i n∈ : 

a. Define [ ] [ ] { }1 2: , ,...,i i rN v N v x x x= , with [ ]1 ir N v≤ ≤ . 

b. Create a vector, say “adjacentVector”, where [ ]iN v  is 

temporarily stored. 
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c. Let 
1

1
r

i
i

inducedSum c
=

= ∑  where {1
0ic = ( )2deg 1iif x G

otherwise
ω≥ − , [ ]1,i r∀ ∈ . 

d. If ( )21inducedSum Gω≥ , then go to the next step 5; there is at 

least one maximum clique of cardinality ( ) ( )2G Gω ω≤ . 

e. Else if ( )21inducedSum Gω<  then go back to step 4 and set 

( ) ( )2 2 1G Gω ω= − . 

5. Find the subset(s) of vertices that form the maximum clique(s) 

( ) ( ) ( ): degi iv V G v Gω∀ ∈ ≥ , with [ ]1,i n∈ : 

a. ( )k iv N v∀ ∈ , with ( )1 ik N v≤ ≤  define ( ) :kN v  

( ) { }1 2, ,...,k sN v y y y= , with ( )1 ks N v≤ ≤ . 

b. ( )k iv N v∀ ∈ , with ( )1 ik N v≤ ≤  create a vector, say “stack,” 

where ( )kN v  is temporarily stored. 

c. For ( )1 ky N v∈ , that is for the first element of each “stack” 

execute the following steps: 

1) Create a vector, say “stackMaximumClique,” where the 

vertices that form a maximum clique will be stored, that is 

1 2“ ” , ,..., tstackMaximumClique z z z= , with ( )1 t Gω≤ ≤ . 

2) Set 1 2 3 1, ,i kz v z v z y= = = . These three vertices form a 3K  

clique so far. 

3) Let 1“ ”elementA y=  and 2“ ”elementB y= . Check if 

“ ”elementA  is adjacent to “ ”elementB . (Do this until 

1“ ” selementA y −=  and “ ” selementB y= ). 
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a) If yes, then check if “ ”elementB  is adjacent to each 

element of the “stackMaximumClique”: 

i. If yes, then add “ ”elementB in 

“stackMaximumClique” and go back to step 

5.c.3), where set 2“ ”elementA y=  and 

3“ ”elementB y= . Continue this until 

1“ ” selementA y −=  and “ ” selementB y= . 

ii. If no, go back to step 5.c.3), where set 

3“ ”elementB y= . Continue this until 

1“ ” selementA y −=  and “ ” selementB y= . 

b) If no, then go back to step 5.c.3), where set 

3“ ”elementB y= . Continue this until 

1“ ” selementA y −=  and “ ” selementB y= . 

Observation 4: The largest size among the “stackMaximumClique” vectors 

provides the clique number of the graph. 

C. THE ENUMERATION ALGORITHM 

Given an undirected graph ( ),G V E  with n  vertices, our enumeration algorithm 

finds all the cliques in G through the use of a stack that always contains a list of nodes 

that comprise a clique of size equal to the number of nodes in the stack, top, and 

successively attempts to add each node not currently in the stack, but adjacent to the top 

node. If such a node is also adjacent to all other nodes in the stack, it is added to the 

stack, and the algorithm continues in this manner until no vertices remain to be added. It 

then backtracks, and attempts to add the next unexplored node to the remaining clique. 
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1. Algorithm ENUMERATION 

 top = 0 

 for s = 1 to n begin 

  STACK[++top] = s 
  onPath[s] = top 

  next_node[s] = s+1 

  while top > 0 begin 

   i = STACK[top] 

   while next_node[i]<=n begin 

    j=next_node[i] 

    while j <= n and adjacent[i,j]==0  

     j++ 

    next_node[i] = j+1 

    if (j <= n) begin 
     k=1 

     while k<top and adjacent[i,STACK[k]]==1 

      k++ 

     if k==top begin 

      STACK[++top] = j 
      next_node[j] = j+1 

     end 

    else begin  
     top-- 

    end 
    i = STACK[top] 

   end 

  end 
 next s  
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2. Discussion 

The enumeration algorithm finds all the cliques which exist in an undirected 

graph and generates each clique exactly once. In order to temporarily store the vertices 

we have found so far during each turn and form a clique, we use a one-dimensional array 

with (up to) n entries, STACK[], that is managed as a stack using the variable top as 

pointer to the top of the stack [25]. Hence, the first top entries of STACK always contains 

a list of vertices that form a clique of cardinality top. Moreover, considering the vertices 

in ascending vertex-number order, we start investigate if each one belongs to a clique by 

setting it as the first element of the “stack.” This investigation takes place among this 

particular vertex and those with higher vertex-numbers. So the vertices which form a 

clique appear in ascending vertex-number order on the “stack” and, thus, we avoid 

repetition of cliques.  
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IV. APPLICATION OF SOCIAL NETWORK ANALYSIS TO 
CRIMINAL ACTIVITY: TERRORIST NETWORKS 

What social network analysis contributes to counter-terrorism is the ability 
to map the invisible dynamics inside a terrorist community. 

P. V. Fellman and R. Wright [17] 

 A. THE MODEL 

Here we develop a model of a social network to investigate our algorithms’ 

behavior and to examine and qualify their results. More precisely, we want to model and 

study a real-world situation. So, we focus on terrorist networks, which consist of a direct 

application area of social networks [5]. According to Balasundaram, et al., in [5], this “is 

essentially a special application of criminal network analysis that is intended to study 

organized crimes such as terrorism….” 

Throughout the analysis of a particular social network and, more specifically, of a 

terrorist network, we try to give answers to crucial questions about its structure, like, 

“who is (are) the leader(s) and how I could identify him(them)?” or, “Are there any active 

subgroup(s) in the network and how I could recognize it(them)?” The information that we 

may derive from a network varies, depending on the type of network. According to P. V. 

Felman et al. in [18], terrorist networks are “first and foremost, covert, which means that 

they have hidden properties, and our information about them is incomplete.” This will 

become obvious in the next section, where we examine a real-world application of 

terrorist networks. 

B. REAL-WORLD APPLICATION # 1, THE TERRORIST ATTACK OF 
SEPTEMBER 11, 2001 

Hence, as a first application model we selected a terrorist network of an extremely 

tragic event which marked world history and signaled the start of the GWOT (Global 

War On Terrorism). This is the terrorist network which depicts the structure and the links 

among the members who were involved in the terrorist attack of September 11, 2001. 
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Valdis Krebs used public data that was available before, but collected after the event [5] 

and constructed a graph. He presented this graph in a remarkable paper, [16], where he 

made a deep analysis of the terrorist network that caused this terrible attack, based on 

SNA. He initially mapped a portion of the network centered around the 19 dead hijackers, 

providing “some insight into the terrorist organization, yet it is incomplete” [16]. Krebs 

collected information about the 19 hijackers and the relations which connected them, 

presenting them in a matrix named Early Hijacker Matrix, as is shown below in Figure 2 

[16]. 

 

 

Figure 2.   Early Hijacker Matrix. (From [16]) 

After completing this matrix he started building a network considering more 

actors and ties than these ones among the 19 hijackers than he had initially used. Finally, 

he constructed a graph which mapped this terrorist network, named “Hijacker’s Network 

Neighborhood” [16] and it is shown below in Figure 3. Moreover, Balasundaram, et al., 

presented this graph in [5], as shown below in Figure 4, having replaced the names of 
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vertices by numbers. So, for practical reasons, we used this last version of the “Hijacker’s 

Network Neighborhood” as the input into our programs, since each vertex is marked by a 

number and there is also a correspondence between the names of the hijackers and the 

numbers of the vertices. This network corresponds to a graph with 37 vertices and 85 

edges, that is a graph say ( )37,85G . 

 

 

Figure 3.   The “Hijacker’s Network Neighborhood.” (From [16]) 
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Figure 4.   The “Hijacker’s Network Neighborhood”. (From [5]) 

After running the two programs, both of them gave us the same correct solution to 

the MCP. More precisely, they indicated that in the “Hijacker’s Network Neighborhood,” 

there is only a maximum clique with clique number six ( ( ) 6Gω = ). This maximum 

clique consists of the following vertices 17,18,21,22,23,28 and is marked by a red circle 

in the graphs of Figure 3 and Figure 4 above. Moreover, the enumeration algorithm 

provided all the cliques in the graph, as shown on the last pages of Appendix D. 

Analyzing the programs’ output results, we may present the following comments: 

1. First of all it is obvious that our algorithms run correctly and have 

successfully implemented in the programming language we selected, 

namely Java. 

2. Only three out of the six actors who form the maximum clique were 

among the 19 hijackers. The other three actors where among their 

“accomplices who did not get on the planes” [16]. The degrees of the three 

hijackers of maximum cliques are the largest in the whole network while 

the three accomplices of maximum clique have not so large degrees. The 

six actors who form the maximum clique in the graph of “Hijacker’s 
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Network Neighborhood,” with their corresponding vertex numbers and 

their degrees, are shown below, in Table 1.  

 

 Hijackers Accomplices 

Actor’s 

name 

Mohammed 

Atta 

Marwan 

al-Shehhi 

Ziad 

Jarrah 

Zakariya 

Essabar 

Said 

Bahaji 

Ramzi 

Bin 

alShibh 

Vertex 

number 

23 17 22 18 21 28 

Degree 15 14 10 5 7 8 

Table 1. The actors who consist the maximum clique and their degrees 

 

3. The actors with the highest degree in the graph (greater than or equal to 

ten) are five, all hijackers, while three of them are the ones who belong to 

the maximum clique and the other two do not belong to the maximum 

clique, as is shown below, in Table 2. 

 

 Hijackers belonging to maximum 

clique 

Hijackers not belonging to 

maximum clique 

Actor’s 

name 

Mohammed 

Atta 

Marwan 

al-Shehhi 

Ziad Jarrah Nawaf 

Alhamzi 

Hami Hanjour 

Vertex 

number 

23 17 22 20 30 

Degree 15 14 10 10 10 

Table 2. The actors with the highest degree (greater than or equal to ten) 
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4. The three hijackers of the maximum clique were pilots of a separate flight, 

each one as is shown below in Table 3, supposing that they had a 

leadership role. In this table they are highlighted in yellow. Moreover, two 

of the hijackers of the fourth flight (Flight 77, which crashed into 

Pentagon) do not belong to the maximum clique, but they are among the 

actors with the highest degree in the graph presented above. These last 

ones are highlighted in red in Table 3. All the others hijackers do not 

belong to the maximum clique and have intermediate or very small degree 

in the graph. 

 

American Airlines 
11 Crashed into 

WTC (north) 

United Airlines 11 
Crashed into WTC 

(south) 

American Airlines 
77 Crashed into 

Pentagon 

United Airlines 93 
Crashed into 
Pennsylvania 

Hijacker 
(Vertex 
number) 

Degree Hijacker 
(Vertex 
number) 

Degree Hijacker 
(Vertex 
number) 

Degree Hijacker 
(Vertex 
number) 

Degree 

Mohamed 
Atta 
(23) 

15 Marwan 
al-Shehhi 

(17) 

14 Nawaf 
Alhamzi 

(20) 

10 Ziad 
Jarrah 
(22) 

10 

Waleed M. 
Alshehri 

(5) 

4 Hamza 
Alghamdi 

(12) 

6 Hani 
Hanjour 

(30) 

10 Saeed 
Alghamdi 

(8) 

6 

Satam al-
Suqami  

(2) 

4 Ahmed 
Alghamdi 

(13) 

3 Khalid 
al-

Midhar 
(26) 

4 Ahmed 
Alhaznawi 

(14)  

3 

Abdulaziz 
Al-Omari 

(11) 

3 Fayez 
Ahmed 

(9) 

3 Salem 
Alhamzi 

(19) 

3 Ahmed 
Alnami 

(13) 

3 

Wail. 
Alshehri 

(1) 

2 Mohald 
Alshehri 

(7) 

2 Majed 
Moqed 

(34) 

1   

Table 3. The 19 Hijackers and their Degrees in the “Hijacker’s Network 
Neighborhood” 

5. Mohamed Atta seems to play a significant role in this terrorist network 

since he belongs to the maximum clique and has the highest degree of all 

37 actors of the network. 
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6. The maximum clique cannot give a sufficient and complete answer about 

the structure and the detection/localization of the leaders and the key 

actors in the network without considering other parameters or metrics of 

the graph. If we consider the vertices degree together with the maximum 

clique, as we analyze above, we may have a deeper understanding of the 

structure and leadership issues of the graph. 

As strong evidence and confirmation of the above results, we quote below some 

comments/conclusions that Krebs drew in [16], where he did a thorough analysis of the 

“Hijacker’s Network Neighborhood” based on SNA parameters and metrics as the main 

centrality measures, which are Degrees, Betweenness and Closeness:  

• I was amazed at how sparse the network was and how distant many 
hijackers on the same team where from each other… 

• …in the transcript (Department of Defense, 2001) bin Laden 
mentions: 

Those who were trained to fly didn’t know the 
others. One group of people did not know the other 
group…. 

• Mohamed Atta was the ring leader of this conspiracy… 

• Atta scores the highest on Degrees, and Closeness but not 
Betweenness centrality. These metrics do not necessarily confirm 
his leader status… 

The above analysis is not far from reality and, together with the graph, it would be 

extremely valuable if the results were developed early enough to prevent this tragic event. 

Unfortunately, all the related data was collected and connected in a graph after the attack, 

when the analysis is easier since we know what has already happened. 

C. REAL-WORLD APPLICATION # 2, THE TERRORIST ATTACK OF U.S. 
EMBASSIES IN NAIROBI, KENYA AND DAR ES SALAAM, TANZANIA 
(AUGUST 7, 1998) 

Another application model is also a terrorist network of another tragic event 

which occurred in two countries of East Africa and the targets were the U.S. Embassies, 

respectively. On August 7, 1998, two cooperating Al-Qaeda cells carried out bombing 
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attacks against the U.S. Embassies in Nairombi, Kenya and Dar-es-Salaam, Tanzania 

killing 224 people and wounding over 5000 [26]. The network which represents the ties 

among the members who were involved in some way in this event is represented by the 

graph in Figure 5 [27] and is based on data which was collected after the event. 

 

 

Figure 5.   The East Africa U.S. Embassies Attack Network and the corresponding 
Maximum Cliques. (From [27]) 

In this case there is a main difference to the group structure comparing with this 

one of the 9/11 terrorist attack, we presented above. Here, there are two types of cells. 

The first cell was responsible for the preparation phase while the second ones executed 

the attacks [26]. This structure is obvious in Figure 5, where the subgroups within the 

rectangles denotes the two attack cells and the rest actors form the preparation cell. This 

network corresponds to a graph with 18 vertices and 51 edges, that is a graph say 

( )18,51G . 

M 

KKM: Khalfan 
Khamis Mohamed 
 
AKG: Ahmed 
Khalfan Ghailani 
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After running the two programs, both of them gave us the same correct solution to the 

MCP. More precisely they gave that in the “East Africa U.S. Embassies attack network” 

there are three maximum cliques with clique number five ( ( ) 5Gω = ). These maximum 

cliques are shown in Table 4 and are marked by a different colored circle in the graphs of 

Figure 5 above.  

 
Max Clique #1 Max Clique #2 Max Clique #3 

Actor’s Name Degree Actor’s Name Degree Actor’s Name Degree 

Odeh 8 Odeh 8 Fahad 6 

Fazul 7 Fazul 7 Fadhil 7 

Al-Owhali 7 Al-Owhali 7 Awad 5 

Azzam 5 Abdullah 7 KKM 4 

Atwah 9 Atwah 9 AKG 4 

Table 4. The actors who consist the maximum cliques and their degrees 

Analyzing the programs’ output results we may present the following comments : 

1. First of all it is obvious that our algorithms run correctly and have 

successfully implemented in the programming language we selected, that is 

Java. 

2. The members of each attack cell form or almost form a maximum clique. The 

members of the Nairobi attack cell belong to the first two maximum cliques 

while the five members of Dar-es-Salaam attack cell consist the third 

maximum clique. Hence, in this case, the concept of maximum cliques depict 

extremely high valued cohesive subgroups within the whole network, 

assigned to execute the last and most crucial act of a terrorist attack. 

3. The number of actors with the highest degree in the graph (greater than or 

equal to seven) is seven. In Table 5 we may see their role and its position 

within the terrorist network, as well as, if they belong to a maximum clique or 

not. The information related to the actor’s role and its position within 

network, have been retrieved by [26] and [27]. 



 28

Actor’s Name Degree Actor’s Role Actor’s Position Belonging to a 

Maximum 

Clique or NOT 

Wahid el-Hage 9 Leader of the East 

African al-Qaeda cell 

Preparation Cell NOT 

Matwalli Atwah 9 He acted as a 

“communication bridge” 

among the persons of the 

two attack cells and the 

preparation cell. 

Preparation Cell Max. Clique  

#1 and #2  

Mohamed 

Sadeek Odeh 

8 Technical advisor 

responsible for carrying 

out the bombings. 

Nairobi Attack 

Cell 

Max. Clique  

#1 and #2  

Fazul Abdullah 

Mohammed 

7 Planning/ Orchestration/ 

Purchaser 

He was a significant 

contributor. 

Nairobi Attack 

Cell 

Max. Clique  

#1 and #2  

Daoud al-

Owhali 

7 Suicide Bomber. Nairobi Attack 

Cell 

Max. Clique  

#1 and #2  

Ahmed 

Abdullah 

7 He replaced el-Hage as 

the leader of al-Qaeda in 

East Africa. He was the 

“mastermind” of the 

coordinated attack. 

Preparation Cell Max. Clique  

#2 

Mohammed 

Fadhil 

7 Operation Leader. (Dar-es-Salaam 

Attack Cell) 

Max. Clique  

#3  

Table 5. The actors with the highest degree (greater than or equal to seven) 
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In the above Table 5, it is obvious that the seven persons with the highest degree within 

the network played a significant role to the bombing attacks and all except one belong to 

a maximum clique. The one who does not belong to a maximum clique is the most 

leading person, named Wahid el Hage, having the highest degree of all the actors. El-

Hage had “…the highest number of social interactions…” [27] and acted as the leader of 

al-Qaeda in East Africa [26] . 

4. There were two actors who belong to the first two maximum cliques, 

without being involved in the Nairobi attack cell, which coincide with the 

maximum cliques #1 and #2. These ones, named Matwalli Atwah and 

Ahmed Abdullah, were two key persons who had significant roles in this 

attack, as it is shown in Table 5. 

5. In this case, the maximum cliques give a very good sense about the 

structure of this network. Together with the number of ties which is the 

corresponding vertex’s degree, they indicate the key persons who played a 

significant role in this terrorist attack, without considering any other SNA 

metric. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Before we fight the enemy we need to 'see' and better understand the 
enemy...map their networks, figure out their 'patterns' for organizing. 

Valdis Krebs 

A. CONCLUSIONS-RESEARCH SUMMARY 

The main question addressed in this thesis is: 

Can we identify and implement an exact algorithm to solve the Maximum Clique 

Problem (MCP) on undirected graphs, in a reasonable time frame? 

We selected two algorithms from the current literature and modified these 

algorithms to improve their performance, developing the pruning and enumeration 

algorithms. We then implemented both of these in a modern, powerful and widely used 

programming language, Java. Our testing involved applying both algorithms to real-

world situations which could be modeled by undirected graphs: terrorist social networks. 

We verified that both algorithms solve the MCP on undirected graphs, and are 

quick on relatively small graphs. Furthermore, the pruning algorithm immediately 

establishes an upper bound on the clique number of a graph and then successively 

improves this bound; thus the pruning algorithm can be terminated early with a valid 

upper bound on the clique number. Similarly, the enumeration algorithm quickly finds 

small cliques, and successively discovers larger and larger cliques in the graph as it 

progresses, each of which provides a lower bound on the clique number of the graph. It 

can be terminated early with a valid lower bound on the clique number. 

If both are run simultaneously, each provides a bound the other cannot, and an 

interval of uncertainty can be established that will eventually be reduced to zero, at which 

point a maximum clique will have been found. 

Moreover analyzing a social network using the SNA methods and measures, as 

we extensively presented in Chapters I and IV, maximum cliques and vertices degree 
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may provide enough information about the social structure of the network under 

investigation. More particularly, the maximum clique(s) and the clique(s) as well, may 

give us the most cohesive subgroups, while the vertices with the largest vertex-degrees 

may show the most central actors in a social network. However, since cliques have been 

criticized for their restrictive nature as we precisely explain in Chapter I, we may 

consider and study one of the branches of the relaxation clique problem and analyze a 

social network under this concept. This may be the subject for an extension of this current 

thesis and an area for further investigation. It is worthwhile to point out that each 

algorithm can be modified in fairly straightforward ways to allow various relaxations of 

the definition of a clique. 

B. FUTURE RESEARCH 

After presenting the conclusions above, it is obvious that there are many areas and 

aspects of this problem’s approach for improving with further study and future research. 

Some suggestions are provided below: 

1. Since the pruning algorithm generates the maximal cliques with 

repetitions, it would be more efficient to be modified in such a way to 

eliminate them and generate the cliques or the maximal cliques or the 

maximum cliques exactly once. 

2. Both computing codes consider as the input data the under investigation 

graph’s adjacency matrix. This method is not so practical for very large 

graphs, where the user have to set thousands of entries. Hence a 

modification to the computing code in order to read and set the adjacency 

matrix from a file text would make it more practical and efficient. 

3. Both algorithms’ concept to solve the MCP is based on the adjacency 

matrix of the under investigation graph. Someone may consider another 

type of data structure to describe the graph and make the algorithms run 

faster. Such data structure may be as follows: 
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a. To use a forward-star data structure in addition to the adjacency 

matrix in order to make finding the next adjacent vertex faster. 

b. To use a forward-star data structure where the adjacency list of 

each vertex would be guaranteed to be sorted in ascending order of 

tail vertex number. 

4. Since cliques have been criticized for their restrictive nature as we 

precisely explain in Chapter II, someone may consider and study one of 

the branches of the relaxation clique problem, extend the current 

algorithms and codes to this direction and analyze a social network under 

this concept.  
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APPENDIX A. NOTATIONS  

( ) ( )( ),G V G E G=  graph consisting of ( )n V G= vertices and ( )  m E G=  edges. 

V , ( )V G   vertex set of a graphG . 

E , ( )E G   edge set of a graphG . 

n    order of G , ( )n V G=   

m    size of G , ( )m E G=  

degG v , deg v  degree of a vertex v in a graph G . 

( )N v    neighborhood of a vertex v , ( ) = degN v v  

( )N v   subgraph induced by ( )N v  

[ ]N v    closed neighborhood of a vertex v  

[ ]N v   subgraph induced by [ ]N v   

H G⊆   H  is a subgraph of a graph G , or G  contains H as a subgraph. 

S , X   induced or edge-induced subgraph 

W , ( ),W u v   u v− walk in G  

nP    path of order n  

nC    cycle of order n  

nK    complete graph of order n  

( ),Gd u v , ( ),d u v  distance between u and v  

( )diam G   diameter of G  
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__
G    complement of a graphG  

__

nK    empty graph of order n  

( )Gδ    minimum degree ofG  

( )GΔ    maximum degree ofG  

ijA a⎡ ⎤= ⎣ ⎦   adjacency matrix of G  

ijB b⎡ ⎤= ⎣ ⎦   incidence matrix ofG  

( )Gω    clique number of G  

( )w e    weight of an edge e  of G  

1 2G G≅   1G  is isomorphic to 2G  

D    density of G  

( )DC v    degree centrality of a vertex v of G  

( )CC v    closeness centrality of a vertex v of G  

( )BC v    betweenness centrality of a vertex v of G  
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APPENDIX B. DEFINITIONS RELATED TO GRAPH THEORY  

The following terms provide a core working vocabulary for discussing Graph 

Theory. The definitions for these terms are derived from [11].  

Adjacency matrix: Let G be a graph of order n and size m, where 

( ) { }1 2, ,..., nV G v v v= and ( ) { }1 2, ,..., nE G e e e= . The adjacency matrix of G  is the 

n n× matrix ijA a⎡ ⎤= ⎣ ⎦ , where {1
0ija = ( )if 

otherwise
i jv v E G∈  . 

Adjacent vertices inG : two vertices are called adjacent in G if there is an edge 

between them. In other words if the pair of these vertices is an element of the edge 

set ( )E G .  

Bridge: an edge e uv=  of a connected graph G  is called a bridge of G  if G e−  

is disconnected. 

Circuit: a circuit in a graph is a closed trail of length 3 or more. 

Clique: a clique in a graph G is a complete subgraph ofG . 

Clique number: the order of the largest clique in a graph G and it is denoted 

by ( )Gω . 

Closed neighborhood: the set of neighbors of a vertex v together with the vertex 

v itself and is denoted by [ ]N v . In other words, [ ] ( ) { }=NN v v v∪ . 

Closed walk: a u v− walk W in G whereu v= . 

Complement: the complement of a graphG , denoted by
__
G , is that graph whose 

vertex set is ( )V G  and such that for each pair u, v of vertices ofG , uv  is an edge of 
__
G if 

and only if uv is not an edge of G . Observe that if G is a graph of order n  and size m , 

then 
__
G is a graph of order n  and size ( )2

n m− . 
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Complete: a graph G is complete if every two distinct vertices of G are adjacent. 

A complete graph of order n is denoted by nK . Therefore, nK has the maximum possible 

size for a graph with n vertices. 

Connected: let u and v  be two vertices of a graph G . Then u is connected to v  

(and also v  is connected to u ) if G  contains a u v−  path in G . So, saying that u and v  

are connected only means that there is some u v−  path in G ; it doesn’t say that u and v  

are necessarily joint by an edge.  

Connected graph: a graphG  is connected if every two vertices of G are 

connected.  

Cut-vertex: a vertex v in a connected graph G  is a cut-vertex of G  if G v−  is 

disconnected. 

Cycle: is a circuit that repeats no vertex, except for the first and last. A k-cycle is 

a cycle of length k. 

Degree: the degree of a vertex v inG is the number of edges incident to v and is 

denoted by degG v , or simply deg v  if the graph G  is clear from the context.  

Degree sequence:  if the degrees of vertices of a graph G are listed in a sequence 

s, then s is called a degree sequence ofG . 

Density of a graph: it is the proportion of possible edges that are actually present 

in the graph. It is the ratio of number of edges present to the maximum possible and is 

denoted by D . 

Diameter: the greatest distance between any two vertices of a connected graph 

G is called the diameter of G and is denoted by ( )diam G .  

Digraph (or Directed graph): is a finite nonempty set V of objects called 

vertices together with a set E of ordered pairs of distinct vertices. 

Disconnected graph: a graphG  is called disconnected if it is not connected.  
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Distance: the distance between u and v is the smallest length of a u v− path in 

G and is denoted by ( ),Gd u v  or simply by ( ),d u v  if the graphG under consideration is 

clear. Hence if ( ),d u v k= , then there exists a u v− path P : 0 1, ,..., ku v v v v= = , of length 

k inG , but no u v− path of smaller length exists in G . 

Edge: is a 2-element subset of the vertex set ( )V G . Edges are sometimes called 

lines. 

Edge-induced subgraph ofG : is the subgraph X  induced by X which has 

edge set X and consists of all vertices that are incident with at least one edge in X   

Edge set: is the set ( )E G  consisting of all the edges of a graph G.   

Empty graph: the graph that has n  vertices and no edges is called the empty 

graph of order n and is denoted by 
__

nK . 

Geodesic path: a u v− path of length ( ),d u v is called a u v− geodesic. 

Graph: a graph ( ) ( )( ),G V G E G=  is an ordered pair of two sets ( )V G  and 

( )E G , where V is a finite nonempty set of objects called vertices (the singular is vertex) 

and E  is a set of 2-element subsets of V  called edges. One could also use ( ),G V E= . At 

times, it is useful to write ( )V G  and ( )E G  rather than V  and E  to emphasize that these 

are the vertex and edge sets of a particular graphG . The graph ( ) ( )( ),G V G E G=  is 

consisting of ( )n V G=  vertices and ( )m E G=  edges. 

Incidence matrix: Let G  be a graph of order n and size m, where 

( ) { }1 2, ,..., nV G v v v= and ( ) { }1 2, ,..., mE G e e e= . The incidence matrix of G  is the n m×  

matrix ijB b⎡ ⎤= ⎣ ⎦ , where {1
0ijb = jif  is incident with e

otherwise
iv  . 
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Induced subgraph: a subgraph F of a graphG  is called an induced subgraph of 

G  if whenever u  and v  are vertices of F and uv  is an edge of G , then uv is an edge of 

F as well.  

Isomorphism: it is the one-to-one correspondence φ  from ( )1V G  to ( )2V G  such 

that ( )1 1 1u v E G∈  if and only if ( ) ( ) ( )1 1 2u v E Gϕ ϕ ∈ . 

Isomorphic graphs: two graphs 1G  and 2G  are isomorphic (have the same 

structure) if there exists a one-to-one correspondence φ  from ( )1V G  to ( )2V G  such that 

( )1 1 1u v E G∈  if and only if ( ) ( ) ( )1 1 2u v E Gϕ ϕ ∈ . If 1G  and 2G  are isomorphic graphs, 

then we say that 1G  is isomorphic to 2G  and we write 1 2G G≅ . 

Length of a path: is the number of edges encountered in a path. 

Length of a walk: is the number of edges encountered in a walk (including 

multiple occurrences of an edge if used in the walk). 

Maximal: a subgraph is said to be maximal with respect to some property if that 

property holds for the subgraph, but does not hold if additional vertices and the edges 

incident with them are added to the subgraph [10]. 

Maximal clique: a maximal clique in a graph G  is a clique that can not be 

entirely contained within another clique [10]. 

Maximum clique: a maximum clique in a graph G  is the largest complete 

subgraph of G . 

Maximum degree: the maximum degree ofG  is the maximum degree among the 

vertices ofG . It is denoted by ( )GΔ .  

Minimum degree: the minimum degree ofG  is the minimum degree among the 

vertices ofG . It is denoted by ( )Gδ . 

Multigraph: consists of a finite nonempty set V of vertices and a set  E  of edges, 

where every two vertices are joined by a finite number of edges (possibly zero) 
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Neighborhood of v : is the set ( )N v  of neighbors of a vertex v . The 

neighborhood of v is sometimes called open neighborhood of v. The cardinality of the 

neighborhood of v equals to the degree of v, that is ( )deg v N v= . 

Neighbors: two vertices are called neighbors, if they are adjacent in G. 

Non-isomorphic graphs: if two graphs 1G  and 2G  are not isomorphic, then they 

are called non-isomorphic graphs. 

Non-regular graph: a graphG ,which at least two vertices have not the same 

degree, is called non-regular. 

Nontrivial graph: is a graph with order at least 2.  

Open walk: is a u v− walk W in G whereu v≠ . 

Order ofG : is the number of vertices inG , in other words the cardinality of the 

vertex set ( )V G . That is the order of G is ( )n V G= .  

Path: a u v− path W in G is a u v− walk in which no vertices is repeated. If no 

vertex in a walk is repeated, then no edge is repeated either. Hence every path is a trail, 

while not every trail is a path. 

Proper subgraph: a graph H  is called a proper subgraph of a graph G if 

H G⊆ and either ( ) ( )V H V G⊂  or ( ) ( )E H E G⊂ . 

Regular: a graphG , where ( ) ( )G Gδ = Δ , that is all the vertices of G have the 

same degree, is called regular. If deg v r= for every vertex v ofG , where 0 1r n≤ ≤ − , 

thenG is r-regular or regular of degree r.  

Size of G : is the number of edges inG , or the cardinality of the edge set ( )V G . 

That is the size of G is ( )m E G= . 

Spanning subgraph: if a subgraph H of a graph G has the same vertex set asG , 

that is ( ) ( )V H V G= , then H  is a spanning subgraph ofG . 



 42

Subgraph: a graph H  is called a subgraph of a graphG , written H G⊆  , if 

( ) ( )V H V G⊆  and ( ) ( )E H E G⊆ . We also say that G  contains H  as a subgraph.  

Subgraph of G  induced by S : if S is a nonempty set of vertices of a graph G , 

then the subgraph of G  induced by S is the induced subgraph with vertex set S . It is 

denoted by S or by 
G

S to emphasize that this is an induced subgraph of G   

Trail: a u v− trail W in G is a u v− walk in which no edge is traversed more than 

once, that is no edge is repeated, while no such condition is placed on vertices. 

Trivial graph: is a graph with exactly one vertex. 

Trivial walk: is a walk of length 0. 

Unweighted graph: a graph G each of whose edges is not assigned a number 

(called cost or weight of the edge) forms an unweighted graph.  

Vertex (Vertices): is a combinatorial element in terms of which a graph is 

defined. Vertices are sometimes called points or nodes.  

Vertex set: is the set ( )V G  consisting of all the vertices of a graphG . 

Walk: a u v− walk W in G is a sequence of vertices in G , beginning with u  and 

ending at v such that consecutive vertices in the sequence are adjacent. That is to say that 

W  can be expressed as W: 0 1, ,..., ku v v v v= = , where 0k ≥ and iv and 1iv + are adjacent for 

0,1,2,..., 1i k= − . Each vertex iv  ( )0 i k≤ ≤ and each edge 1i iv v + ( )0 1i k≤ ≤ − is said to 

lie on, or belong to W . 

Weighted graph: a graph G each of whose edges is assigned a number (called 

cost or weight of the edge) forms a weighted graph. The weight of an edge e  of G  is 

denoted by ( )w e .  
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APPENDIX C. SOCIAL NETWORK ANALYSIS DEFINITIONS 

The following terms provide a core working vocabulary for discussing Social 

Network Analysis. The definitions for these terms are derived by [10].  

 

Actor: it is the social entity. Actors are discrete individual, corporate, or 

collective social units. 

Actors set: it is the entire collection of actors on which we take measurements. 

Affiliation Network: it is a two-mode social network, in which only one set has 

actors, while the second mode is a set of events to which the actors belongs. 

Centrality: the centrality determines the importance of an actor within the 

network. It is denoted by ( )A iC v , where ( )iv V G∈  and A  is a generic measure. 

Cohesive subgroup: a cohesive subgroup is a subset of actors among whom there 

are relatively strong, direct, intense, frequent or positive ties. 

Dichotomous relations: they are those binary relations that are coded as either 

present or absent for each pair of actors.   

Directional relation: it is the relation where the relational tie between a pair of 

actors has an origin and a destination; that is the tie is directed from one actor in a pair to 

the other actor in the pair. 

Dyad: a dyad consists of a pair of actors and the (possible) tie(s) between them. It 

is the unit of social network analysis. 

Event: the events are often defined on the basis of membership in clubs or 

voluntary organizations, attendance at social events, sitting on a board of directors or 

socializing in a small group. 

Group: a group is a collection of all actors on which ties are to be measured. 
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Mode: a mode is a distinct set of entities on which the structural variables are 

measured. 

Multiple Relations: they are the case where more than one relations are 

measured on a single set of actors. 

Non-directional relation: it is the tie between a pair of actors which does not 

have a direction. 

One-mode network: it is a social network where all actors are all of the same 

type, i.e. people in a work group. It is the most common type of network, since all actors 

come from one set. 

Prestige: it is a property that characterizes an actor in a directed network with 

directional relations and qualify an actor by the number of indegrees ties rather than the 

outdegrees ones. 

Relation: it is the collection of ties of specific kind among members of a group. 

Relational tie: a tie establishes a linkage between a pair of actors. It is also called social 

tie. 

Single Relation: it is a relation where each actor in the actor set relates to every 

other actor of this relation. 

Social Network: a social network consists of a finite set(s) of actors and the 

relations defined on them. 

Social Network data: consists of one (or more) relations measured among a set 

of actors. 

Subgroup: a subgroup of actors is any subset of actors and all (possible) ties 

among them. 

Triad: it is a subset of three actors and the (possible) tie(s) among them. 

Valued relations: they are those relations which can take a range of values, 

indicating the strength, intensity, or frequency of the ties between each pair of actors.  
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APPENDIX D. THE CODE OF THE ENUMERATION ALGORITHM 

public class All_Cliques_Enum_Adj_Terror_Thesis { 
 /* 
  * File: Maximum Clique 
  *  
  * Created on April 03, 2008 
  *  
  * 1st Modified on April 06, 2008 
  * 2nd Modified on April 28, 2008 
  *  
  * *************THIS WORKS FOR the Terror Graph G(37,85) WITH A K6 
MAX CLIQUE, BASED ON ENUMARATION METHOD ***** 
  *  
  *   
  */ 
 
 public static void main(String[] args) { 
 
  // initialize instance variables 
  int vectorsNumber = 37; 
  int[] degree = new int[vectorsNumber]; 
  int[] booleanDegree = new int[vectorsNumber]; 
  int maxCliqueDegree = 0; 
  int tempMaxCliqueDegree = 0;// This is equal to (Potential 
Maximum Clique # -1), (PMC#-1). Its value decreases upon the condition 
which are met, until Maximum Clique is found. Then Clique#=(updated by 
the algorithm)PMC# 
  int initialTempMaxCliqueDegree = 0;// This is equal to the 
initial value of the (Potential Maximum Clique # -1), (PMC#-1). Its 
value remains constant. 
  int newTempMaxCliqueDegree = 0; 
  boolean maxClique = false; 
  boolean initialMaxClique = false; 
  int cliqueNumber = -1;// this is the clique number 
  int[][] table = new int[vectorsNumber][vectorsNumber];// 
This is the nxn adjacency matrix of the given graph G (with n vertices). 
 
  int[] count = new int[vectorsNumber];// counter how many 
Maximum Cliques there exist 
  int[][] maximumClique = new int[40][vectorsNumber];// This 
  int[][][] clique = new 
int[vectorsNumber][1140][vectorsNumber]; 
  int row, column; 
  // 
************************************************************************
**************************************************** 
  // I. PUT AN UPPER BOUND 
 
  // 1. Set the nxn adjacency matrix of the given graph G 
(with n vertices). 
  table[0][0] = 0; 
  table[0][1] = 1; 
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  table[0][2] = 0; 
  table[0][3] = 0; 
  table[0][4] = 1; 
  ............................. 
            .............................  
  table[36][33] = 0; 
  table[36][34] = 1; 
  table[36][35] = 0; 
  table[36][36] = 0; 
 
  // **************** 
 
  System.out.println("Maximum Clique Problem of G(" + 
vectorsNumber + ",85)"); 
  System.out.println(); 
 
  // 2. Find the degree of each vertex by adding the entries 
of each row of the adjacency matrix. 
  System.out.println("Find the degree of each vertex "); 
  for (row = 0; row < vectorsNumber; row++) { 
   int sum = 0;// This is the degree of each vertex 
   for (column = 0; column < vectorsNumber; column++) 
    sum = sum + table[row][column]; 
   degree[row] = sum; 
  } 
  // print the degree of each vertex 
  for (row = 0; row < vectorsNumber; row++) { 
   System.out.println("degree(v" + (row + 1) + " )= " + 
degree[row]); 
  } 
  System.out.println(); 
 
  // 3. Find the Potential Max Clique#, say PMQ#, 
  // (Potential Max Clique# = max Vertex Degree+1). 
  for (row = 0; row < vectorsNumber; row++) 
   if (degree[row] > tempMaxCliqueDegree) { 
    tempMaxCliqueDegree = degree[row]; 
   } 
  System.out.println("Potential Max Clique Degree: " 
    + (tempMaxCliqueDegree + 1) + "."); 
 
  initialTempMaxCliqueDegree = tempMaxCliqueDegree; 
 
  // 4. Let v_k the vertices with degree greater than or equal 
to (PMC#-1),for some k, 1<=k<=n. Find the # of vertices v_k with degree 
greater than or equal to (PMC#-1), say “inducedSum”. 
  do { 
   int inducedSum = 0;// the # of vertices with degree 
greater than or equal to (PMC#-1) 
   for (row = 0; row < vectorsNumber; row++) { 
    if (degree[row] >= tempMaxCliqueDegree) { 
     booleanDegree[row] = 1; 
     inducedSum = inducedSum + 
booleanDegree[row]; 
    } else 
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     booleanDegree[row] = 0; 
   } 
 
   // 4a. If “inducedSum” is greater than or equal to 
PMC#, then maybe there is a Max Clique with Clique# = PMC#. 
   if (inducedSum >= tempMaxCliqueDegree + 1) { 
    System.out.println("Maybe there is a K" 
      + (tempMaxCliqueDegree + 1) + " Max 
Clique."); 
    System.out.println(); 
    initialMaxClique = true; 
 
    // 4b. Else if “inducedSum” is NOT greater than 
or equal to PMC#, there is not a Maximum Clique with Clique# = PMQ#. Set 
PMQ#=PMQ#-1 and continue by going back to step 4. 
   } else { 
    System.out.println("There is not a K" 
    + (tempMaxCliqueDegree + 1) + " Max Clique."); 
    System.out.println("Check for K"  
                        + (tempMaxCliqueDegree) + " Max Clique."); 
    System.out.println(); 
    tempMaxCliqueDegree--; 
   } 
  } while (tempMaxCliqueDegree > 0 && initialMaxClique == 
false); 
  // 
************************************************************************
********************************************* 
int top = -1; 
  for (row = 0; row < vectorsNumber; row++) { 
 
   int[] stack = new int[vectorsNumber];// This 
   // is the vector where the vertices of the 
   // neighborhood of each element of N[V_k] are 
   // stored. 
 
   int[] nextNode = new int[vectorsNumber];// This 
   // is the vector where the vertices consisting a 
   // Maximum Clique are stored. 
 
   stack[++top] = row; 
   nextNode[row] = row + 1; 
    
   while (top >= 0) { 
    int i = stack[top]; 
     
    while (nextNode[i] <= vectorsNumber) { 
     int j = nextNode[i]; 
      
     while (j < vectorsNumber && table[i][j] == 
0) { 
      j++; 
     } 
     nextNode[i] = j + 1; 
     if (j < vectorsNumber) { 
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      int k = 0; 
      while (k < top && table[j][stack[k]] 
== 1) { 
       k++; 
      } 
      if (k == top) { 
       top++; 
       stack[top] = j; 
       nextNode[j] = j + 1; 
       System.out.println(); 
       System.out.println(); 
 
       if (top > cliqueNumber) { 
        cliqueNumber = top; 
       } 
       for (int spyros = 1; spyros <= 
tempMaxCliqueDegree; spyros++) { 
        if (top == spyros) { 
 
        
 System.out.println(); 
        
 System.out.println("There is a K" + (top + 1) + " Clique."); 
 
        
 System.out.println("The Clique is: "); 
      for (int m = 0; m <= top; m++) { 
         
 System.out.print((stack[m] + 1) + " "); 
    clique[top + 1][count[top + 1]][m] = stack[m]; 
         } 
        
 System.out.println(); 
         count[top + 1]++; 
        } 
         
       } 
      } 
     } else { 
      top--; 
     } 
     if (j < vectorsNumber) { 
      i = stack[top]; 
     } 
    } 
   } 
  } 
  int[] maximumClique1 = new int[cliqueNumber + 1]; 
  // print the outputs 
  System.out.println(); 
  System.out.println("The Maximum Clique is K" + (cliqueNumber 
+ 1)); 
  System.out.println("There is " + count[cliqueNumber + 1] 
    + " Maximum Clique"); 
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  System.out.println("The Maximum Clique is: "); 
  // for (int k = 0; k <vectorsNumber; k++) { 
  for (int n = 0; n < count[cliqueNumber + 1]; n++) { 
   System.out.print((n + 1) + ") "); 
   for (int m = 0; m < cliqueNumber + 1; m++) { 
    System.out.print((clique[cliqueNumber + 1][n][m] 
+ 1) + " "); 
    maximumClique1[m] = clique[cliqueNumber + 
1][n][m] + 1; 
       } 
   System.out.println(); 
  } 
  System.out.println(); 
  // 
************************************************************************
*** 
 
  // 
************************************************************************
****** 
  for (int k = 0; k < cliqueNumber; k++) { 
   System.out.println("There are " + count[(cliqueNumber 
+ 1) - k] 
     + " Cliques K" + ((cliqueNumber + 1) - 
k)); 
   System.out.println("The Cliques are: "); 
   // for (int k = 0; k <vectorsNumber; k++) { 
   for (int n = 0; n < count[(cliqueNumber + 1) - k]; 
n++) { 
    System.out.print((n + 1) + ") "); 
    for (int m = 0; m < (cliqueNumber + 1) - k; m++) 
{ 
     System.out.print((clique[(cliqueNumber + 
1) - k][n][m] + 1) 
       + " "); 
     // System.out.print((clique[k][n][m]+1) + 
" "); 
    } 
    System.out.println(); 
   } 
   System.out.println(); 
  } 
 
 } 
} 
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THE OUTPUT 
 

Maximum Clique Problem of G(37,85) 
 
Find the degree of each vertex  
degree(v1 )= 2 
degree(v2 )= 4 
degree(v3 )= 4 
degree(v4 )= 3 
degree(v5 )= 4 
degree(v6 )= 2 
degree(v7 )= 2 
degree(v8 )= 6 
degree(v9 )= 3 
degree(v10 )= 4 
degree(v11 )= 3 
degree(v12 )= 6 
degree(v13 )= 3 
degree(v14 )= 3 
degree(v15 )= 3 
degree(v16 )= 1 
degree(v17 )= 14 
degree(v18 )= 5 
degree(v19 )= 3 
degree(v20 )= 10 
degree(v21 )= 7 
degree(v22 )= 10 
degree(v23 )= 15 
degree(v24 )= 3 
degree(v25 )= 4 
degree(v26 )= 4 
degree(v27 )= 2 
degree(v28 )= 8 
degree(v29 )= 5 
degree(v30 )= 10 
degree(v31 )= 3 
degree(v32 )= 4 
degree(v33 )= 1 
degree(v34 )= 1 
degree(v35 )= 4 
degree(v36 )= 2 
degree(v37 )= 2 
 
Potential Max Clique Degree: 16. 
There is not a K16 Max Clique. 
Check for K15 Max Clique. 
 
There is not a K15 Max Clique. 
Check for K14 Max Clique. 
 
There is not a K14 Max Clique. 
Check for K13 Max Clique. 
 
There is not a K13 Max Clique. 
Check for K12 Max Clique. 
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There is not a K12 Max Clique. 
Check for K11 Max Clique. 
 
There is not a K11 Max Clique. 
Check for K10 Max Clique. 
 
There is not a K10 Max Clique. 
Check for K9 Max Clique. 
 
There is not a K9 Max Clique. 
Check for K8 Max Clique. 
 
There is not a K8 Max Clique. 
Check for K7 Max Clique. 
 
Maybe there is a K7 Max Clique. 
 
There is a K2 Clique. 
The Clique is:  
1 2  
 
There is a K3 Clique. 
The Clique is:  
1 2 5 
…………………………………………………………… 
…………………………………………………………… 
The Maximum Clique is K6 
There is 1 Maximum Clique 
The Maximum Clique is:  
1) 17 18 21 22 23 28  
 
There is 1 Clique K6 
The Cliques are:  
1) 17 18 21 22 23 28  
 
There are 9 Cliques K5 
The Cliques are:  
1) 17 18 21 22 23  
2) 17 18 21 22 28  
3) 17 18 21 23 28  
4) 17 18 22 23 28  
5) 17 21 22 23 28  
6) 17 21 23 25 28  
7) 17 22 23 28 32  
8) 17 22 23 29 30  
9) 18 21 22 23 28  
 
There are 31 Cliques K4 
The Cliques are:  
1) 8 12 13 20  
2) 15 17 21 23  
3) 17 18 21 22  
4) 17 18 21 23  
5) 17 18 21 28  
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6) 17 18 22 23  
7) 17 18 22 28  
8) 17 18 23 28  
9) 17 21 22 23  
10) 17 21 22 28  
11) 17 21 23 25  
12) 17 21 23 28  
13) 17 21 25 28  
14) 17 22 23 28  
15) 17 22 23 29  
16) 17 22 23 30  
17) 17 22 23 32  
18) 17 22 28 32  
19) 17 22 29 30  
20) 17 23 25 28  
21) 17 23 28 32  
22) 17 23 29 30  
23) 18 21 22 23  
24) 18 21 22 28  
25) 18 21 23 28  
26) 18 22 23 28  
27) 20 24 26 31  
28) 21 22 23 28  
29) 21 23 25 28  
30) 22 23 28 32  
31) 22 23 29 30  
 
There are 66 Cliques K3 
The Cliques are:  
1) 1 2 5  
2) 2 3 4  
3) 3 4 8  
4) 8 12 13  
5) 8 12 14  
6) 8 12 20  
7) 8 13 20  
8) 9 10 17  
9) 10 17 23  
10) 11 17 23  
11) 12 13 20  
12) 15 17 21  
13) 15 17 23  
14) 15 21 23  
15) 17 18 21  
16) 17 18 22  
17) 17 18 23  
18) 17 18 28  
19) 17 19 22  
20) 17 21 22  
21) 17 21 23  
22) 17 21 25  
23) 17 21 28  
24) 17 22 23  
25) 17 22 28  
26) 17 22 29  
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27) 17 22 30  
28) 17 22 32  
29) 17 23 25  
30) 17 23 28  
31) 17 23 29  
32) 17 23 30  
33) 17 23 32  
34) 17 25 28  
35) 17 28 32  
36) 17 29 30  
37) 18 21 22  
38) 18 21 23  
39) 18 21 28  
40) 18 22 23  
41) 18 22 28  
42) 18 23 28  
43) 20 23 30  
44) 20 24 26  
45) 20 24 31  
46) 20 26 30  
47) 20 26 31  
48) 21 22 23  
49) 21 22 28  
50) 21 23 25  
51) 21 23 28  
52) 21 25 28  
53) 22 23 28  
54) 22 23 29  
55) 22 23 30  
56) 22 23 32  
57) 22 28 32  
58) 22 29 30  
59) 23 25 28  
60) 23 27 28  
61) 23 28 32  
62) 23 29 30  
63) 24 26 31  
64) 29 30 35  
65) 30 35 36  
66) 30 35 37  
 
There are 85 Cliques K2 
The Cliques are:  
1) 1 2  
2) 1 5  
3) 2 3  
4) 2 4  
5) 2 5  
6) 3 4  
7) 3 6  
8) 3 8  
9) 4 8  
10) 5 10  
11) 5 11  
12) 6 12  
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13) 7 9  
14) 7 12  
15) 8 12  
16) 8 13  
17) 8 14  
18) 8 20  
19) 9 10  
20) 9 17  
21) 10 17  
22) 10 23  
23) 11 17  
24) 11 23  
25) 12 13  
26) 12 14  
27) 12 20  
28) 13 20  
29) 14 22  
30) 15 17  
31) 15 21  
32) 15 23  
33) 16 20  
34) 17 18  
35) 17 19  
36) 17 21  
37) 17 22  
38) 17 23  
39) 17 25  
40) 17 28  
41) 17 29  
42) 17 30  
43) 17 32  
44) 18 21  
45) 18 22  
46) 18 23  
47) 18 28  
48) 19 20  
49) 19 22  
50) 20 23  
51) 20 24  
52) 20 26  
53) 20 30  
54) 20 31  
55) 21 22  
56) 21 23  
57) 21 25  
58) 21 28  
59) 22 23  
60) 22 28  
61) 22 29  
62) 22 30  
63) 22 32  
64) 23 25  
65) 23 27  
66) 23 28  
67) 23 29  
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68) 23 30  
69) 23 32  
70) 23 33  
71) 24 26  
72) 24 31  
73) 25 28  
74) 26 30  
75) 26 31  
76) 27 28  
77) 28 32  
78) 29 30  
79) 29 35  
80) 30 34  
81) 30 35  
82) 30 36  
83) 30 37  
84) 35 36  
85) 35 37  
 

 



 56

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 57

APPENDIX E. THE CODE OF THE PRUNING ALGORITHM 

/*  * File: Maximum Clique 
  *  
  * Created on March 03, 2008 
  *  
  * Modified on March 012, 2008 
  *  
  *  
  * ***********THIS WORKS FOR the GRAPH "911", G(37,85) where there 
is a K6 (17,18,21,22,23,28) 
  *  
  * 
  * Let G=(V(G),E(G)) be a graph with n=|V(G)| vertices and 
m=|E(G)| edges. 
  *  Let v_i belongs to V(G). Then N[V_i]=set of neighbors of v_i, 
together with v_i itself, called the closed neighborhood. The subgraph 
induced by* N[V_i] is denoted by <N[V_i]>. 
  */ 
 
 public static void main(String[] args) { 
 
  // initialize instance variables 
  int vectorsNumber = 37; 
  int[] degree = new int[vectorsNumber]; 
  int[] booleanDegree = new int[vectorsNumber]; 
  int maxCliqueDegree = 0; 
  int tempMaxCliqueDegree = 0;// This is equal to (Potential 
Maximum Clique # -1), (PMC#-1). Its value decreases upon the condition 
which are met, until Maximum Clique is found. Then Clique#=(updated by 
the algorithm)PMC# 
  int initialTempMaxCliqueDegree = 0;// This is equal to the 
initial value of the (Potential Maximum Clique # -1), (PMC#-1). Its 
value remains constant. 
  int newTempMaxCliqueDegree = 0; 
  boolean maxClique = false; 
  boolean initialMaxClique = false; 
  int[][] table = new int[vectorsNumber][vectorsNumber];// 
This is the nxn adjacency matrix of the given graph G (with n vertices). 
  int[][] maximalClique = new int[1000][vectorsNumber]; 
  int countMaximalCliques=0; 
  int row, column; 
//**********************************************************************
****************************************************** 
  // I. PUT AN UPPER BOUND 
 
  // 1. Set the nxn adjacency matrix of the given graph G 
(with n vertices). 
  table[0][0] = 0; 
  table[0][1] = 1; 
  table[0][2] = 0; 
.................................... 
.................................... 
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  table[36][34] = 1; 
  table[36][35] = 0; 
  table[36][36] = 0; 
 
  // **************** 
 
  System.out.println("Maximum Clique Problem of G(37,85)"); 
  System.out.println(); 
 
  // 2. Find the degree of each vertex by adding the entries 
of each row of the adjacency matrix. 
  System.out.println("Find the degree of each vertex "); 
  for (row = 0; row < vectorsNumber; row++) { 
   int sum = 0;// This is the degree of each vertex 
   for (column = 0; column < vectorsNumber; column++) 
    sum = sum + table[row][column]; 
   degree[row] = sum; 
  } 
  // print the degree of each vertex 
  for (row = 0; row < vectorsNumber; row++) { 
   System.out.println("degree(v" + (row + 1) + " )= " + 
degree[row]); 
  } 
  System.out.println(); 
 
  // 3. Find the Potential Max Clique#, say PMQ#, 
  // (Potential Max Clique# = max Vertex Degree+1). 
  for (row = 0; row < vectorsNumber; row++) 
   if (degree[row] > tempMaxCliqueDegree) { 
    tempMaxCliqueDegree = degree[row]; 
   } 
  System.out.println("Potential Max Clique Degree: " 
    + (tempMaxCliqueDegree + 1) + "."); 
 
  initialTempMaxCliqueDegree = tempMaxCliqueDegree; 
 
  // 4. Let v_k the vertices with degree greater than or equal 
to (PMC#-1),for some k, 1<=k<=n. Find the # of vertices v_k with degree 
greater than or equal to (PMC#-1), say “inducedSum”. 
  do { 
   int inducedSum = 0;// the # of vertices with degree 
greater than or equal to (PMC#-1) 
   for (row = 0; row < vectorsNumber; row++) { 
    if (degree[row] >= tempMaxCliqueDegree) { 
     booleanDegree[row] = 1; 
     inducedSum = inducedSum + 
booleanDegree[row]; 
    } else 
     booleanDegree[row] = 0; 
   } 
 
   // 4a. If “inducedSum” is greater than or equal to 
PMC#, then maybe there is a Max Clique with Clique# = PMC#. 
   if (inducedSum >= tempMaxCliqueDegree + 1) { 
    System.out.println("Maybe there is a K" 
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    + (tempMaxCliqueDegree + 1) + " Max Clique."); 
    System.out.println(); 
    initialMaxClique = true;     
 

// 4b. Else if “inducedSum” is NOT greater than 
or equal to PMC#, there is not a Maximum Clique with 
Clique# = PMQ#. Set PMQ#=PMQ#-1 and continue by going 
back to step 4. 

   } else { 
    System.out.println("There is not a K" 
    + (tempMaxCliqueDegree + 1) + " Max Clique."); 
    System.out.println("Check for K"  

+ tempMaxCliqueDegree)+ " Max Clique."); 
    System.out.println(); 
    tempMaxCliqueDegree--; 
   } 
  } while (tempMaxCliqueDegree > 0 && initialMaxClique == 
false); 
  // 
************************************************************************
********************************************* 
 
  // II. Search for the Max Clique, based on the Upper Bound 
 
  newTempMaxCliqueDegree = tempMaxCliqueDegree;// This is 
equal to (Potential Maximum Clique # -1), (PMC#-1). 
  // Its value decreases at the end of the algorithm if all 
the intermediate conditions are NOT met, until Maximum Clique is found. 
  // Then Clique#=(updated by the algorithm)PMC# 
 
  int[] adjacentVector = new int[initialTempMaxCliqueDegree + 
1];// The vector where the vertices of the closed neighborhood of each 
v_k are stored. 
  int[] booleanDegreeOfInducedTable = new 
int[initialTempMaxCliqueDegree + 1]; 
  int[] degreeOfInducedTable = new 
int[initialTempMaxCliqueDegree + 1]; 
 
  // 1. For every v_k with degv_k=(PMC#-1), investigate if 
<N[Vk]> is a Max Clique with Clique# = PMQ#: 
  do { 
   System.out.println("Check for K" + 
(newTempMaxCliqueDegree + 1) 
     + " Max Clique."); 
   System.out.println(); 
   int countForMaxClique = 0; 
   int vectorOfMaxClique = 0; 
 
   // a. Build <N[V_k]>: 
   do { 
    int count = 0;// This is the cardinality of 
v_k's 
    // neighborhood set. 
    vectorOfMaxClique = countForMaxClique; 
    adjacentVector[0] = countForMaxClique; 



 60

    System.out.println(); 
    System.out.println("Check if the vertex V" 
    + (countForMaxClique + 1) + " belongs to a K" 
        + (newTempMaxCliqueDegree + 1) + " Max Clique."); 
 
    adjacentVector[count] = countForMaxClique; 
 
    // i. First, find the adjacent vertices to v_k. 
    // ii. Then, store v_k and its adjacent vertices 
in a one dimensional array, say [V_k] (adjacentVector[]). 
    for (column = 0; column < vectorsNumber; 
column++) { 
     if (table[vectorOfMaxClique][column] == 1) 
{ 
      count++; 
      adjacentVector[count] = column; 
     } 
    } 
 
    // b. Check if the degrees of the vertices of 
<N[V_k]> are greater than or equal to the (PMQ#-1): 
    // i. First, find the degree in <N[V_k]> of each 
vertex of <N[V_k]> 
    for (row = 0; row < count + 1; row++) { 
     int sum1 = 0;// This is the degree in 
<N[V_k]> of each vertex of <N[V_k]> 
     for (column = 0; column < count + 1; 
column++) 
      sum1 = sum1 + 
table[adjacentVector[row]][adjacentVector[column]]; 
     degreeOfInducedTable[row] = sum1; 
    } 
 
    // ii. Then, find the # of vertices with degree 
greater than or equal to the (PMQ#-1), say “inducedSum1”. 
    int inducedSum1 = 0;//This is the # of vertices, 
of <N[V_k]> , with degree greater than or equal to the (PMQ#-1). 
    for (row = 0; row < count + 1; row++) { 
     if (degreeOfInducedTable[row] >= 
newTempMaxCliqueDegree) { 
      booleanDegreeOfInducedTable[row] = 
1; 
      inducedSum1++; 
     } else 
      booleanDegreeOfInducedTable[row] = 
0; 
     // inducedSum1 = inducedSum1 + 
     // booleanDegreeOfInducedTable[row]; 
    } 
    // c. If the “inducedSum1” is greater than or 
equal to the PMQ# then the Clique# = PMQ#. 
    if (inducedSum1 >= newTempMaxCliqueDegree + 1) { 
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      System.out.println("YES!!! V"      + 
(countForMaxClique + 1) + " belongs to at least one K" 
+(newTempMaxCliqueDegree + 1) + " Max Clique."); 
      System.out.println(); 
 
      int rowUpTriangular = 1; 
      int columnUpTriangular = 1; 
 
      // Find the Maximum Cliques that v_k 
belongs to. Consider the one dimensional array [V_k], 
(“adjacentVector[]”), which contains the elements of the closed 
neighborhood of v_k, N[V_k]. 
      // ******* 
      // Also, consider each element of 
v_k’s neighborhood, say v_m, for some m, 1<=m<=(cardinality of v_k's 
      // neighborhood set). 
      for (row = rowUpTriangular; row < 
count + 1; row++) { 
 
      int top = -1;// counts the top for 
the vector with the vertices adjacent to the "second vertex" 
        int topMaxClique = 2;// 
counts the top for the vector with the Max Clique vertices 
        int[] stack = new 
int[initialTempMaxCliqueDegree + 1];// This is the vector where the 
vertices of the neighborhood of each element of N[V_k] are stored. 
 
        int[] stackMaxClique = 
new int[initialTempMaxCliqueDegree + 1];// This is the vector where the 
vertices consisting a Maximum Clique are stored. 
        System.out.println(); 
        System.out.println("the 
element v_m now is: " + (adjacentVector[row] + 1)); 
        System.out.println(); 
 
        // 1) For each element 
of v_k's neighborhood,say v_m, for some m, 1<=m<=(cardinality of v_k's 
neighborhood set), find its neighborhood N(V_m) in <N[V_k]> and store it 
in a one dimensional array, say “stack”. 
        for (column = 
columnUpTriangular; column < count + 1; column++) { 
         if 
(table[adjacentVector[row]][adjacentVector[column]] == 1) { 
          top++; 
          stack[top] = 
adjacentVector[column]; 
 System.out.println("stack[" + top + "]= " + stack[top]); 
         } 
        } 
 System.out.println("top= " + top); 
        System.out.println(); 
 
        // 2) Create another one 
dimensional array, say “stackMaxClique”. This is the vector where the 
vertices, consisting a Maximum Clique, are stored. Store v_k as first 
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element, v_m as second element (starting with m=1) and the first element 
of the “stack”, as third element (these 3 vertices consist a K3). 
        stackMaxClique[0] = 
countForMaxClique; 
        stackMaxClique[1] = 
adjacentVector[row]; 
        stackMaxClique[2] = 
stack[0]; 
 
// 3) Set “elementA”=the first element of the “stack”, and 
“elementB”=the second one. Check if “elementA” and “elementB” are 
adjacent: 
        int countTop = 0; 
        int stackElementA = 0; 
        int stackElementB = 1; 
        boolean stop = false; 
 
        if (top < 1) { 
        
 System.out.println("For v_k= " + (countForMaxClique + 1) + " and 
v_m= " + (adjacentVector[row] + 1) + " there is NOT a Max Clique."); 
        } 
 
        if (top >= 1) { 
 
         do { 
          if 
(table[stack[stackElementA]][stack[stackElementB]] == 1) { 
 
           int 
countInTheStackMaxClique = 0; 
 
           // a) 
// If yes, check if the “elementB” is adjacent with each element of 
“stackMaxClique” (start checking by the third element of 
“stackMaxClique”). 
           for 
(int i = 0; i <= topMaxClique; i++) { 
           
 if (table[stackMaxClique[i]][stack[stackElementB]] == 1) { 
            
 countInTheStackMaxClique++; 
           
 } 
           } 
          
 System.out.println("topMaxClique= " + topMaxClique); 
          
 System.out.println("countInTheStackMaxClique= "   
 + countInTheStackMaxClique); 
 
// i. If yes, then add “elementB” to “stackMaxClique”, and go back to 
step 4), where “elementA”=“elementB” and “elementB”= the next element of 
“stack”. 
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           if 
(countInTheStackMaxClique == topMaxClique + 1) { 
           
 topMaxClique++; 
 stackMaxClique[topMaxClique] = stack[stackElementB]; 
 stackElementA = stackElementB; 
 stackElementB++; 
 System.out.println("stackMaxClique[" + topMaxClique + "]= "  
 + stackMaxClique[topMaxClique]); 
           
 countTop++; 
           } 
 
// ii. If no then go back to step 4), where “elementA” remains the same 
and “elementB”=the next element of “stack”. 
           else { 
 stackElementB++; 
           } 
// This is the condition to terminate the do-while loop. 
           if 
((stackElementA == top && stackElementB == (top + 1)) 
|| (stackElementA == (top - 1) && stackElementB == (top + 1))) { 
           
 stop = true; 
           } 
          } 
 
// b) If no go back to step 4), where “elementA” remains the same and 
“elementB”=the next element of “stack”. 
          else { 
          
 stackElementB++; 
          } 
 
          // c) If 
check all elements of “stack”, as “elementB” then “elementA”=the next 
element of “stack” and “elementB”=the element of “stack” which is after 
the new “elementA”. 
          if 
(stackElementB == top + 1) { 
 stackElementA++; 
 stackElementB = stackElementA + 1; 
          } 
 System.out.println("stop= " + stop); 
 
// This is the condition to terminate the do-while loop. 
 
          if 
((stackElementA == top && stackElementB == (top + 1))     
|| (stackElementA == (top - 1) && stackElementB == (top + 1))) { 
           stop = 
true; 
          } 
 
 System.out.println("stackElementA= " + stackElementA); 
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 System.out.println("stackElementB= " + stackElementB); 
 
         } while (stop == 
false); 
      if(topMaxClique>maxCliqueDegree){ 
      maxCliqueDegree=topMaxClique+1; 
      } 
 
     for (int j = 0; j <= topMaxClique; j++) { 
     maximalClique[countMaximalCliques][j]= 

stackMaxClique[j] + 1; 
     } 
 
     countMaximalCliques++; 
          
 
  System.out.print("The Max Clique is: "); 
         for (int i = 0; i 
<= topMaxClique; i++) { 
           

System.out.print("V" + (stackMaxClique[i] + 1) + " "); 
         } 
        } 
        System.out.println(); 
       } 
      } 
 
      // d) Continue with the next element 
of N[V_k], v_(m+1), going back to step 1). 
     } 
 
//**********************************************************************
******************************* 
     // v. Else if the “inducedSum1” is equal 
to the PMQ# then v_k belongs to one Max Clique with Clique# = PMQ#. 
     else if (inducedSum1 == 
newTempMaxCliqueDegree + 1) { 
      System.out.println("YES!!! There is 
a K" + (newTempMaxCliqueDegree + 1) + " Max Clique."); 
      maxClique = true; 
      maxCliqueDegree = 
newTempMaxCliqueDegree + 1; 
      System.out.print("The Max Clique is: 
V" + (countForMaxClique + 1) + " "); 
 
      for (int i = 1; i <= count; i++) 
       if (degreeOfInducedTable[i] >= 
newTempMaxCliqueDegree) { 
        System.out.print("V" + 
(adjacentVector[i] + 1) + " "); 
       } 
      System.out.println(); 
     } 
    } 
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    // d. If the # of vertices of <N[V_k]> are not 
greater than or equal to the PMQ# then continue searching for a Clique# 
= PMQ# by going back to step II.1. with the next vertex v_(k+1) 
    else 
     System.out.println("The vertex V" + 
(countForMaxClique + 1) " does not belong to a K" 
(newTempMaxCliqueDegree + 1) + " Max Clique. "); 
 
    countForMaxClique++; 
 
   } while (countForMaxClique < vectorsNumber); 
   System.out.println(); 
 
   // II.2. If there is not a Clique# = PMQ# then set 
PMQ# = PMQ#-1 and continue searching for a Maximum Clique with Clique# = 
(PMC#-1) by going back to step I.4. 
   newTempMaxCliqueDegree--; 
 
  } while (newTempMaxCliqueDegree > 0 && maxClique == false); 
 
  // print the outputs 

System.out.println("The Maximal Cliques are:"); 
  for (int i = 0; i < countMaximalCliques; i++) { 
   System.out.println(); 
  for (int j = 0; j < maxCliqueDegree; j++) { 
   System.out.print(maximalClique[i][j]+" "); 
  } 
   
  } 
  System.out.println(); 
   
  System.out.println("The Maximum Clique is K" + 
maxCliqueDegree); 
 
 } 
} 
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THE OUTPUT 
 

Maximum Clique Problem of G(37,85) 
 
Find the degree of each vertex  
degree(v1 )= 2 
degree(v2 )= 4 
degree(v3 )= 4 
degree(v4 )= 3 
degree(v5 )= 4 
degree(v6 )= 2 
degree(v7 )= 2 
degree(v8 )= 6 
degree(v9 )= 3 
degree(v10 )= 4 
degree(v11 )= 3 
degree(v12 )= 6 
degree(v13 )= 3 
degree(v14 )= 3 
degree(v15 )= 3 
degree(v16 )= 1 
degree(v17 )= 14 
degree(v18 )= 5 
degree(v19 )= 3 
degree(v20 )= 10 
degree(v21 )= 7 
degree(v22 )= 10 
degree(v23 )= 15 
degree(v24 )= 3 
degree(v25 )= 4 
degree(v26 )= 4 
degree(v27 )= 2 
degree(v28 )= 8 
degree(v29 )= 5 
degree(v30 )= 10 
degree(v31 )= 3 
degree(v32 )= 4 
degree(v33 )= 1 
degree(v34 )= 1 
degree(v35 )= 4 
degree(v36 )= 2 
degree(v37 )= 2 
 
Potential Max Clique Degree: 16. 
There is not a K16 Max Clique. 
Check for K15 Max Clique. 
 
There is not a K15 Max Clique. 
Check for K14 Max Clique. 
 
There is not a K14 Max Clique. 
Check for K13 Max Clique. 
 
There is not a K13 Max Clique. 
Check for K12 Max Clique. 
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There is not a K12 Max Clique. 
Check for K11 Max Clique. 
 
There is not a K11 Max Clique. 
Check for K10 Max Clique. 
 
There is not a K10 Max Clique. 
Check for K9 Max Clique. 
 
There is not a K9 Max Clique. 
Check for K8 Max Clique. 
 
There is not a K8 Max Clique. 
Check for K7 Max Clique. 
 
Maybe there is a K7 Max Clique. 
 
Check for K7 Max Clique. 
 
Check if the vertex V1 belongs to a K7 Max Clique. 
The vertex V1 does not belong to a K7 Max Clique.  
 
Check if the vertex V2 belongs to a K7 Max Clique. 
………………………………………………………………………………………………………………………………… 
………………………………………………………………………………………………………………………………… 
The vertex V37 does not belong to a K7 Max Clique.  
 
Check for K6 Max Clique. 
 
Check if the vertex V1 belongs to a K6 Max Clique. 
The vertex V1 does not belong to a K6 Max Clique.  
 
Check if the vertex V2 belongs to a K6 Max Clique. 
……………………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………………… 
 
Check if the vertex V17 belongs to a K6 Max Clique. 
YES!!! There is a K6 Max Clique. 
The Max Clique is: V17 V18 V21 V22 V23 V28  
 
………………………………………………………………………………………………… 
………………………………………………………………………………………………… 
The Maximum Clique is K6 
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